Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Развитию начертательной геометрии в нашей стране способствовали такие художники, зодчие и учёные как А. Рублёв, Дионисий, В. Баженов, А. Воронихин, И. Ползунов, И. Кулибин и другие. Первым русским профессором начертательной геометрии был Я. А. Севостьянов (1796-1849), который создал оригинальный курс начертательной геометрии.

Прямая линия - одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Если основой  построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, вдоль которой расстояние между двумя точками является кратчайшим.

Прямая линия в линейной алгебре - линия первого порядка. Общее уравнение прямой:

Ах+Ву+С=0,

где А, В и С - любые постоянные.

 

 

Способы графического задания прямой линии

Для определения положения прямой в пространстве существуют следующие методы:

1.Двумя точками ( А и В ).

 Рассмотрим две точки в пространстве А и В. Через эти точки можно провести прямую линию получим отрезок [AB]. Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: 

[A1B1]<[AB]; [A2B2]<[AB]; [A3B3]<[AB].

а) модель Построение модели и эпюра прямой по двум точкам б) эпюр

Рисунок 3.1.Определение положения прямой по двум точкам

Обозначим углы между прямой и плоскостями проекций через a- с плоскостью П1, b- с плоскостью П2, g- с плоскостью П3 и тогда получим:

½А1В1½=½AB½cos a

½A2B2½=½AB½cos b

½A3B3½=½AB½cos g.

Частный случай ½A1B1½=½A2B2½=½A3B3½ при таком соотношении прямая образует с плоскостями проекций равные между собой углы a=b=g»350, при этом каждая из проекций расположена под углом 450 к соответствующим осям проекций.

При построении перспективного чертежа сначала строят одну ортогональную проекцию, а затем на картинной плоскости находят центральную проекцию построенной ранее ортогональной проекции и самого оригинала. На главную