Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Чтобы получить обратимый чертеж, т.е. чертеж дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют. В зависимости от дополнения существуют различные виды чертежей.

 

Если две поверхности второго порядка имеют общую плоскость симметрии, то линия их пересечения проецируется на эту плоскость в виде кривой второго порядка

а) модельб) эпюр
Рисунок 8.39. Пересечение сферы и цилиндра 

Плоскость симметрии определена осью симметрии цилиндра Q и центром сферы S (рис.8.39). Плоскости принадлежат и симметричные сами себе точки A, B, C иD линий пересечения. Проекция же линий на фронтальную плоскость имеет форму параболы m2 и аналитически описывается формулой параболы.

Задачами на принадлежность являются задачи на построение проекций: точек на линии или поверхности, линий на поверхности, линий и поверхностей, проходящих через заданные точки и линии. На главную