Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Чтобы получить обратимый чертеж, т.е. чертеж дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют. В зависимости от дополнения существуют различные виды чертежей.

 

 

Развертка поверхности

Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).

Приступая к изучению развертки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся, а полученную плоскую фигуру – ее разверткой.

 

 

Развертка пирамиды

Рисунок 8.40. Пирамида и её развертка

При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину ребер и сторон основания.

Рисунок 8.41. Определение истинной величины основания и ребер пирамиды

 

Алгоритм построения можно сформулировать следующим образом (рис. 8.41):

  1. Определяют натуральную величину основания пирамиды (например методом замены плоскостей проекций);

  2. Определяют истинную величину всех ребер пирамиды любым из известных способов (в данном примере натуральная величина всех ребер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S);

  3. Строят основание пирамиды и по найденным трем сторонам строят какую-либо из боковых граней, пристраивая к ней следующие (рис.8.42).

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. 

Примером первой точки на рисунках служит точка К0 и КОD, а иллюстрацией второго случая являются точки М0 и М0*. Для определения точки К0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ ( метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S0М0 и, наконец, точки К0.

Рисунок 8.42. Построение развертки пирамиды

 

 

Задачами на принадлежность являются задачи на построение проекций: точек на линии или поверхности, линий на поверхности, линий и поверхностей, проходящих через заданные точки и линии. Выполнении графических работ Виды проецирования, типы задач , графические задания Сборочный чертеж