Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Суть метода ортогональные (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, а затем совмещают их с плоскостью чертежа.

 

 

 

Задание касательной плоскости на эпюре Монжа

Так как плоскость однозначно определяется двумя пересекающимися прямыми, то для построения касательной плоскости к поверхности в данной точке, достаточно через эту точку провести две линии принадлежащие поверхности и к каждой из них провести касательные в заданной точке.

Касательной прямой к поверхности называется прямая, касательная к какой-либо кривой принадлежащей поверхности.

Рассмотрим на примере (рис.8.50) построение касательной плоскости  к параболоиду вращения Ф в точке М.

Для решения этой задачи через точку М проведем две кривые плоские линии n и m принадлежащие поверхности Ф. Линия n - окружность, лежащая в горизонтальной плоскости уровня проведенной через точку М, линия m – парабола, лежащая в горизонтально проецирующей плоскости проведенной через вершину параболоида и точку М. Чтобы построить касательную плоскость достаточно провести к данным линиям касательные.

Касательная к плоской кривой линии лежит в одной плоскости с ней. Так как линия n лежит в горизонтальной плоскости то на плоскость П1 она проецируется в натуральную величину n1, что позволяет сразу построить горизонтальную проекцию касательной к ней t11. На плоскость П2 - окружность проецируется в прямую n2, а фронтальная проекция касательной t21 будет с ней совпадать.

Линия m лежит в горизонтально проецирующей плоскость, поэтому её горизонтальная проекция m1 – прямая, определяющая и горизонтальную проекцию касательной t12.  

Рисунок 8.50. Построение касательной плоскости к параболоиду вращения

На плоскость П2 парабола проецируется с искажением m2, поэтому для построения касательной, повернем поверхность Ф вокруг оси, до совмещения плоскости параболы с фронтальной плоскостью проекций, проекция точки М2 при этом переместиться в положение точки М2*

Через эту точку проведем касательную t22* к очерку параболоида. И обратным вращением находим проекцию касательной t22.

Две пересекающиеся в точке М2 прямые t21 и t22 определяют положение фронтальной проекции касательной плоскости α2, а прямые t11 и t12 – горизонтальную проекцию касательной плоскость α1.

Таким образом на эпюре получена плоскость α касательная к поверхности параболоида вращения в точке М.

При рассмотрении свойств параллельного проецирования установлено, что отношение отрезков прямой равно отношению их проекций. Для того чтобы разделить отрезок прямой в заданном отношении, достаточно разделить в том же отношении проекции отрезка. На главную