Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Развитию начертательной геометрии в нашей стране способствовали такие художники, зодчие и учёные как А. Рублёв, Дионисий, В. Баженов, А. Воронихин, И. Ползунов, И. Кулибин и другие. Первым русским профессором начертательной геометрии был Я. А. Севостьянов (1796-1849), который создал оригинальный курс начертательной геометрии.

Прямая линия - одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Если основой  построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, вдоль которой расстояние между двумя точками является кратчайшим.

Прямая линия в линейной алгебре - линия первого порядка. Общее уравнение прямой:

Ах+Ву+С=0,

где А, В и С - любые постоянные.

 

 

Способы графического задания прямой линии

 

 

2. Двумя плоскостями (a; b).

Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

3. Двумя проекциями.

Пусть в плоскостях П1  и П2 даны проекции прямых заданных отрезками [А1В1] и [A2B2]. Проведем через эти прямые плоскости a и b перпендикулярные плоскостям проекций. В том случае если эти плоскости непараллельные линией их пересечения будет прямая заданная отрезком [АВ], проекциями которой являются отрезки [А1В1] и [А2В2].

а) a непараллельная b

 

  б) a и b совпадают

Рисунок 3.2.Определение положения прямой в пространстве по двум проекциям отрезка

Плоскости  a и b могут слиться в одну плоскость g, если, например, проекции [А1В1] и [А2В2] перпендикулярны оси x  и пересекают ее в одной точке . Прямая линия в этом случае будет однозначно определена своими проекциями, если на каждой из них обозначить две какие-либо точки. Если же обозначений не делать, то за искомую прямую можно принять любую прямую, лежащую в этой  плоскости при условии, что она непараллельная ни одной из плоскостей проекций. Точка К, в данном случае - точка пересечения прямой с плоскостью П2.

Точкой и углами наклона к плоскостям проекций.

Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве(рис.3.3).

Рисунок 3.3.
Определение положения прямой по
точке и углам наклона к плоскостям проекций

 

При построении перспективного чертежа сначала строят одну ортогональную проекцию, а затем на картинной плоскости находят центральную проекцию построенной ранее ортогональной проекции и самого оригинала. На главную