Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Суть метода ортогональные (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, а затем совмещают их с плоскостью чертежа.

 

ГОСТ 2.317-69 определяет положение окружностей, лежащих в плоскостях, параллельных плоскостям проекций для прямоугольной изометрической проекции (рис.9.6) и для прямоугольной диметрии (рис.9.7).

Рисунок 9.6. Изометрические проекции окружностей,
расположенных в плоскостях параллельных плоскостям проекций

Рисунок 9.7. Диметрические проекции окружностей,
расположенных в плоскостях параллельных плоскостям проекций

Если изометрическую проекцию выполняют без искажения по осям x, y, z, то большая ось эллипсов 1,2, 3 равна 1,22, а малая ось -0.71 диаметра окружности.

Если изометрическую проекцию выполняют с искажением по осям x, y, z, то большая ось ось эллипсов 1, 2, 3 равна диаметру окружности, а малая - 0.58 диаметра окружности.

Если димметрическую проекцию выполняют без искажения по осям x и z то большая ось эллипсов 1, 2, 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 - 0.95, эллипсов 2 и 3 - 0.35 диаметра окружности.

Если диметрическую проекцию выполняют с искажения по осям x и z, то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось эллипса 1 - 0.9, эллипсов 2 и 3 - 0,33 диаметра окружности.

1-эллипс (большая ось расположена под углом 900 к оси y); 2-эллипс (большая ось расположена под углом 900 к оси z); 3-эллипс (большая ось расположена под углом 900 к оси x).

 

 

При рассмотрении свойств параллельного проецирования установлено, что отношение отрезков прямой равно отношению их проекций. Для того чтобы разделить отрезок прямой в заданном отношении, достаточно разделить в том же отношении проекции отрезка. На главную