Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Суть метода ортогональные (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, а затем совмещают их с плоскостью чертежа.

Построение аксонометрических изображений

 

Переход от ортогональных проекций предмета к аксонометрическому изображению рекомендуется осуществлять в такой последовательности (рис. 9.8):

1. На ортогональном чертеже размечают оси прямоугольной системы координат, к которой и относят данный предмет. Оси ориентируют так, чтобы они допускали удобное измерение координат точек предмета. Например, при построении аксонометрии тела вращения одну из координатных осей целесообразно совместить с осью тела.

2. Строят аксонометрические оси с таким расчетом, чтобы обеспечить наилучшую наглядность изображения и видимость тех или иных точек предмета.

3. По одной из ортогональных проекций предмета чертят вторичную проекцию.

4. Создают аксонометрическое изображение, для наглядности делают вырез четверти.

Рисунок 9.8. Построение аксонометрического изображения

 ГОСТ 2.317-69 определяет условности  и способы нанесения размеров при построении аксонометрического изображения, основное внимание следует обратить на следующих:

Рисунок 14.9 Штриховка в аксонометрии

·Линии штриховки сечения в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям.

·При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии – параллельно измеряемому отрезку.

· В аксонометрических проекциях спицы маховиков и шкивов, ребра жесткости и подобные элементы штрихуют.

 

При рассмотрении свойств параллельного проецирования установлено, что отношение отрезков прямой равно отношению их проекций. Для того чтобы разделить отрезок прямой в заданном отношении, достаточно разделить в том же отношении проекции отрезка. На главную