Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Начертательная геометрия — инженерная дисциплина, представляющая двумерный геометрический аппарат и набор алгоритмов, для исследования свойств геометрических объектов. Практически, начертательная геометрия ограничивается исследованием объектов трёхмерного евклидова пространства.

Виды проецирования.

 

Одно из основных геометрических понятий - отображение множеств. В начертательной геометрии каждой точке трехмерного пространства ставится в соответствие определенная точка двумерного пространства – плоскости. Геометрическими элементами отображения служат точки, линии, поверхности пространства. Геометрический объект, рассматриваемый  как точечное множество отображается на плоскость по закону проецирования. Результатом такого отображения является изображение объекта.

В основу любого изображение положена операция проецирования, которая заключается в следующем. В пространстве выбирают произвольную точку S (рис.1.1) в качестве центра проецирования и плоскость Пi, не проходящая через точку S, в качестве плоскости проекций ( картинной плоскости). Чтобы спроецировать точку А на плоскость Пi , через центр проецирования S проводят луч SА до его пересечения с плоскостью Пi в точке Аi. Точку Аi принято называть центральной проекцией точки А , а луч SА - проецирующим лучом.

Описанные построения выражают суть операции, называемой центральным проецированием точек пространства на плоскость.

В евклидовом пространстве существуют точки, которые не имеют центральных проекций, и наоборот в плоскости Пi  есть точки, которые в пространстве не имеют оригиналов (точки D и F).

Точка F прямой m принадлежит плоскости , , проходящей через центр проецирования S и расположенной параллельно плоскости проекций, таким образом проецирующий луч SF параллелен плоскости проекций, а точка F, как и все точки лежащие в плоскости не имеют центральных проекций на Пi.

 

Центральное проецирование

Рисунок 1.1. Центральное проецирование

Точка Di проекции прямой mi не имеет оригинала на прямой m, так как проецирующий луч SDi параллелен прямой.

Для исключения подобных случаев евклидово пространство расширяют введением несобственных (бесконечно удаленных) точек. Такое пространство называется расширенным евклидовым пространством.

Проецирующие лучи, проведенные через все точки кривой n, образуют проецирующую коническую поверхность N. Проекция криволинейной фигуры, таким образом, представляет собой линию пересечения проецирующей поверхности N и плоскости проекций Пi.

Рисунок 1.2. Центральное проецирование линии

 

Рисунок 1.3. Центральное проецирование поверхности

Коническую поверхность К образуют лучи и при проецировании трехмерной фигуры (рис. 1.3). Линию Ki принято называть в этом случая очерковой или очерком данной фигуры.

 

 

Суть аксонометрического чертежа в том, что сначала оригинал жестко связывают с декартовой системой координат OXYZ, ортогонально проецируют его на одну из плоскостей проекций OXY, или OXZ. Затем параллельным проецированием находят параллельную проекцию полученной конструкции: осей координат OX, OY, OZ, вторичной проекции и оригинала. На главную