Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Прямой задачей начертательной геометрии является задача построения чертежа, т.е. изображения предмета на плоскости и изучение способов этого построения. Обратной задачей является восстановление по проекционному чертежу формы, размеров оригинала, взаимного расположения его элементов и других геометрических параметров.

Параллельные прямые линии.

Параллельными называются две прямые, которые лежат в одной плоскости и не имеют общих точек.

Особый случай представляют собой прямые, параллельные одной из плоскостей проекций. Например, фронтальные и горизонтальные проекции профильных прямых параллельны, но для оценки их взаимного положения необходимо сделать проекцию на профильную плоскость проекций. В рассмотренном случае проекции отрезков на плоскость П3 пересекаются, следовательно, они не параллельны.

Решение этого вопроса можно получить сравнением двух соотношений если:

А2В2/ А1В1= С2Д2/ С1 Д1Þ АВ//СД

А2В2/ А1В1¹ С2Д2/ С1Д1Þ АВ#СД

а) модель б) эпюр

Рисунок 3.20. Прямые параллельные профильной плоскости проекций

 

Рассмотрим пространственную модель координатных плоскостей проекций. Для определения положения геометрической фигуры в пространстве и выявления её формы по ортогональным проекциям наиболее удобной является декартова система координат. Декартова система координат состоит из трёх взаимно перпендикулярных плоскостей На главную