Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Прямой задачей начертательной геометрии является задача построения чертежа, т.е. изображения предмета на плоскости и изучение способов этого построения. Обратной задачей является восстановление по проекционному чертежу формы, размеров оригинала, взаимного расположения его элементов и других геометрических параметров.

Пересекающиеся прямые.

Пересекающимися называются две прямые лежащие в одной плоскости и имеющие одну общую точку.

Если прямые пересекаются, то точки пересечения их одноименных проекций находится на одной линии связи

Построение плоскости, касательной к поверхности Касательная плоскость - это множество всех касательных прямых, проведённых к данной кривой поверхности и проходящих через одну её точку.

 

а) модель б) эпюр
Рисунок 3.21. Пересекающиеся прямые

В общем случае справедливо и обратное утверждение, но есть два частных случая:

Рассмотрим пространственную модель координатных плоскостей проекций. Для определения положения геометрической фигуры в пространстве и выявления её формы по ортогональным проекциям наиболее удобной является декартова система координат. Декартова система координат состоит из трёх взаимно перпендикулярных плоскостей На главную