Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

При составлении чертежа приходится преодолевать противоречие между непрерывностью изображаемого материального предмета и линейностью его изображения. Например, непрерывная поверхность на чертеже может быть задана только конечным количеством линий и точек.

Проекции плоских углов

 

Угол - геометрическая фигура, состоящая из двух различных лучей, выходящих из одной точки. Углом между прямыми называется меньший из двух углов между лучами, параллельными этим прямым. Углом между плоскостью и не перпендикулярной ей прямой называется угол между прямой и её проекцией на данную плоскость.

Рассмотрим ряд свойств ортогональных проекций плоских углов:

1. Если хотя бы одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то на эту плоскость прямой угол проецируется без искажения (Теорема о проецировании прямого угла)

 

Рисунок 3.25. Теорема о проецировании
прямого угла

 

Рисунок 3.26. Обратная теорема о проецировании прямого угла

Дано: ÐАВС = 90о; [ВС] // П1; [АС] # П1.

Для доказательства теоремы продлим отрезок АС до пересечения с плоскостью П1 получим горизонтальный след прямой -  точку М º М1, одновременно принадлежащую прямой и ее проекции. Из свойства ортогонального проецирования следует, что [ВС] // [В1С1]. Если через точку М проведем прямую  МD параллельную С1В1 , то она будет параллельна и СВ, а следовательно  ÐСМD= 90о. Согласно теореме о трех перпендикулярах ÐС1МD=90о. Таким образом, [MD]^[А1С1] и [MD]//[В1С1], следовательно, ÐА1С1В1= 90о, что и требовалось доказать.  В случае когда [АС]^П1 проекцией угла, согласно свойствам ортогонального проецирования, будет прямая линия.

2. Если проекция угла представляет угол 900, то проецируемый угол будет прямым лишь при условии, что одна из сторон этого угла параллельна плоскости проекций .

3. Если обе стороны любого угла параллельны плоскости проекций, то его проекция равна по величине проецируемому углу. 

4. Если стороны угла параллельны плоскости проекций или одинаково наклонены к ней, то деление проекции угла на этой плоскости пополам соответствует делению пополам и самого угла в пространстве.

5. Если стороны угла не параллельны плоскости проекций, то угол на эту плоскость проецируется с искажением.

Схему построения обратимого ортогонального чертежа развил Гаспар Монж – знаменитый французский ученый и государственный деятель. По схеме Монжа оригинал (например точка) проецируется ортогонально на две взаимно перпендикулярные плоскости проекций П1 - горизонтальную плоскость проекций и П2 - фронтальную плоскость проекций. На главную