Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

При составлении чертежа приходится преодолевать противоречие между непрерывностью изображаемого материального предмета и линейностью его изображения. Например, непрерывная поверхность на чертеже может быть задана только конечным количеством линий и точек.

Метод плоскопараллельного перемещения

Изменение взаимного положения проецируемого объекта  и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем  изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций.. Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

а)модельб) эпюр
Рисунок 4.3. Определение натуральной величины отрезка методом плоскопараллельного перемещения

Свойства плоскопараллельного перемещения:

1. При всяком перемещении точек в плоскости  параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х.

2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.

В зависимости от  положения этих плоскостей  по отношению к плоскостям проекций и вида кривой линии - определяющей траекторию перемещения точек, метод плоскопараллельного проецирования имеет следующие частные случаи:

1. Метод вращения вокруг оси, перпендикулярной плоскости проекций;

2.  Метод вращения вокруг оси, параллельной плоскости проекций;

3. Метод вращения вокруг оси, принадлежащей плоскости проекций (вращение вокруг следа плоскости)- способ совмещения.

Рассмотрим некоторые из этих способов.

 

Схему построения обратимого ортогонального чертежа развил Гаспар Монж – знаменитый французский ученый и государственный деятель. По схеме Монжа оригинал (например точка) проецируется ортогонально на две взаимно перпендикулярные плоскости проекций П1 - горизонтальную плоскость проекций и П2 - фронтальную плоскость проекций. На главную