Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Для того чтобы трехмерный объект, находящийся в трехмерном пространстве, "перенести" на плоскость, т. е. получить его изображение, необходимо его спроецировать. Для этого, из выбранной определённым образом точки пространства, которая называется центром проекции, необходимо провести прямые линии (лучи) через каждую точку изображаемого объекта.

  Взаимное расположение прямой и плоскости

Определение взаимного положения прямой и плоскости - позиционная задача, для  решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается  в следующем: через прямую проведем вспомогательную секущую плоскость g и установим относительное положение двух прямых а и в, последняя из которых является линией пересечения вспомогательной секущей плоскости  g и данной  плоскости a

Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямая а лежит в плоскости a, параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость a.

Таким образом возможны три случая относительного расположения прямой и плоскости:

  • Прямая принадлежит плоскости;

  • Прямая параллельна плоскости;

  • Прямая пересекает плоскость, частный случай – прямая перпендикулярна плоскости.

Рассмотрим каждый случай.

Рисунок 5.13. Метод вспомогательных секущих плоскостей

Рассмотрим схему построения ортогонального чертежа прямой линии. Так как две точки однозначно определяют положение прямой в пространстве, то нам достаточно задать на комплексном чертеже проекции двух точек, принадлежащих прямой и попарно соединить их первые, вторые и третьи проекции. На главную