Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Для того чтобы трехмерный объект, находящийся в трехмерном пространстве, "перенести" на плоскость, т. е. получить его изображение, необходимо его спроецировать. Для этого, из выбранной определённым образом точки пространства, которая называется центром проекции, необходимо провести прямые линии (лучи) через каждую точку изображаемого объекта.

 

Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций ÎАВС, р//P3, р1^Ох, р2^Ох)

а) модель б) эпюр

Рисунок 5.18. Профильная прямая

 

Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след -  это горизонталь плоскости, фронтальный  - фронталь и профильный - профильная линия плоскости.

Рассмотрим схему построения ортогонального чертежа прямой линии. Так как две точки однозначно определяют положение прямой в пространстве, то нам достаточно задать на комплексном чертеже проекции двух точек, принадлежащих прямой и попарно соединить их первые, вторые и третьи проекции. На главную