Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Для того чтобы трехмерный объект, находящийся в трехмерном пространстве, "перенести" на плоскость, т. е. получить его изображение, необходимо его спроецировать. Для этого, из выбранной определённым образом точки пространства, которая называется центром проекции, необходимо провести прямые линии (лучи) через каждую точку изображаемого объекта.

Прямая линия, пересекающая плоскость

Нахождение точки пересечения прямой линии и плоскости – основная задача начертательной геометрии.

Задача. Дано: плоскость AВС и прямая а.

Требуется найти точку пересечения прямой с плоскостью и определить видимость прямой по отношению к плоскости.

Для решения задачи:

  1. Через горизонтальную проекцию прямой а1 проведем вспомогательную горизонтально проецирующую плоскость g (таким образом а Î g).

  2. Горизонтальный след плоскости g1 пересекает проекцию плоскости A1В1С1 в точках D1 и F1, которые определяют положение горизонтальной проекции п1- линии пересечения плоскостей g и AВС. Для нахождения фронтальной  и профильной проекции п спроецируем точки D и F на фронтальную  и профильную плоскости проекций.

  3. На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает  проекции а в точке К, которая и является  проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К1.

  4. Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.

а) модель б) эпюр
Рисунок 5.21. Нахождение точки пересечения прямой и плоскости

Таким образом алгоритм решения задачи состоит из следующей последовательности действий

1. Построение вспомогательной секущей плоскости g ( горизонтально – проецирующая плоскость ), которую проводят через прямую а (аÎg);

2. Построение линии пересечения вспомогательной плоскости g и заданной плоскости a (п=aÇg);

3. Определение искомой точки К, как точки пересечения двух прямых, заданной - а и полученной в результате пересечения плоскостей – п (К=а Ç п). В качестве вспомогательной плоскости g рекомендуется брать одну из проецирующих плоскостей.

Рассмотрим схему построения ортогонального чертежа прямой линии. Так как две точки однозначно определяют положение прямой в пространстве, то нам достаточно задать на комплексном чертеже проекции двух точек, принадлежащих прямой и попарно соединить их первые, вторые и третьи проекции. На главную