Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

В зависимости от направления проецирующих лучей параллельное проецирование может быть косоугольным, когда проецирующие лучи наклонены к плоскости проекций, и прямоугольным (ортогональным), когда проецирующие лучи перпендикулярны к плоскости проекций.

Кривые линии

 

В основу классификации кривых положена природа их уравнений.

Кривые подразделяются на алгебраические и трансцендентные в зависимости от того, являются ли их уравнения алгебраическими или трансцендентными в прямоугольной системе координат.

Плоская кривая линия называется алгебраической, если её уравнение f (xy)=0. Функция  f (xy) является степенным множителем относительно переменных х и у; в остальных случаях кривая называется трансцендентной.

Кривая линия, представленная в декартовых координатах уравнением п- й степени, называется алгебраической кривой п-го порядка.

Порядок плоской алгебраической кривой линии определяется наибольшим числом точек её пересечения прямой линией. Любая прямая линия может пересекать алгебраическую кривую линию п-го порядка не более чем в п точках. 

Рассмотрим несколько примеров алгебраической кривой линии:

Рисунок 7.2.  Парабола

 

Парабола – кривая второго порядка, прямая пересекает ее в двух точках (рис.7.2). При этом парабола может быть определена как: Методы преобразования проекций. Вращение Позиционные и метрические задачи решаются проще, если геометрические фигуры занимают по отношению к плоскостям проекций частные положения (перпендикулярные или параллельные). Такое положения фигур можно достичь вращением их вокруг проецирующих, линий уровня или координатных осей  

-множество точек М(xy) плоскости, расстояние FM которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию MN до определенной прямой АN - директрисы параболы;

-линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса;

-в прямоугольной системе координат 0ху с началом в вершине параболы и осью направленной по оси параболы уравнение параболы имеет так называемый канонический вид 

y2=2px,

где р (фокальный параметр) - расстояние от фокуса до директрисы.

Если плоскость перпендикулярна к двум плоскостям проекций, то она называется плоскостью уровня. Следовательно, плоскость уровня всегда параллельна одной из плоскостей проекций. Существует три вида плоскостей уровня На главную