Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.

Линия и точка, принадлежащие поверхности

Для определения принадлежности точки и линии поверхности рассмотрим следующие  позиционные задачи:

Задача По одной проекции точки, принадлежащей поверхности, найти точку на поверхности

Дано:

1. Поверхность Ф , заданная проекциями каркаса состоящего из образующих l  и направляющих n.

2. Проекция точки К1, принадлежащей поверхности Ф.

а) модель б) эпюр

Рисунок 8.18. Точка на поверхности

Алгоритм решения задачи:

1. Через заданную проекцию точки К1 проводим одноименную проекцию произвольной вспомогательной линии принадлежащей поверхности т1.

2. Находим точки  11, 21, 31, 41, пересечения проекции линии m1 с проекцией каркаса поверхности, т.е. соответственно с проекциями линий  l11,  l21,  l31,  l41.

3. По линиям связи находим проекции точек 12, 22, 32, 42 как точки лежащие на  проекциях образующих каркаса соответственноl12,  l22,  l32,  l42   и определяющих положение проекции линии т2 на поверхности Ф.

4. По линии связи находим положение проекции точки К2, как точку принадлежащую вспомогательной линии т2.

 

 

 

Прямые уровня - это прямые, принадлежащие плоскости и параллельные какай - либо плоскости проекций. Эти прямые называют прямыми уровня, так как они принадлежат плоскости уровня. Существует три вида прямых уровня На главную