Начертательная геометрия Центральное проецирование Плоскость Фронтали Пирамида Призматоид Додекаэдр Циклоида Синусоида Теорема Г. Монжа Основная теорема аксонометрии Теоремао двойном касании Гиперболоид вращения стереометрия

Рассмотренные методы проецирования позволяют решить прямую задачу начертательной геометрии, т. е. по оригиналу построить плоский чертёж. Полученные таким образом проекции на одну плоскость дают неполное представление о предмете, его форме и положении в пространстве, т. е. такой чертёж не обладает свойством обратимости.

 

 

 

Метод вспомогательных секущих плоскостей .

Вспомогательные секущие плоскости чаще всего выбирают проецирующими и параллельными одной из плоскостей проекций - плоскостями уровня.

Этот способ рекомендуется применять, если сечения заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:

1. Если образующие (окружности) расположены в общих плоскостях уровня;

2. Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической;

3. Линейчатые каркасы заданных поверхностей принадлежат общим плоскостям уровня или пучкам плоскостей общего положения.

Пример 2: Пересечение сферы и цилиндра (рис.8.32).В данном примере вспомогательные плоскости уровня могут быть параллельными плоскостям П2 и П1. В первом случае фронтальные плоскости пересекают сферу по окружности, а цилиндр по прямолинейным образующим.

Одна из таких плоскостей  α пересекается с поверхностями по дуге окружности a и прямой линии b. Точка 1 пересечения   дуги окружности а и прямой b принадлежат искомой кривой.

а) модель б) эпюр
Рисунок 8.32. Пересечение полусферы и эллиптического цилиндра

 

 

Под позиционными задачами будем понимать задачи по определению общих элементов геометрических фигур. К ним относятся задачи на принадлежность и задачи на пересечение геометрических фигур. На главную