Линейная алгебра и аналитическая геометрия

Функции

Понятие множества и их виды

Определение. Множеством М называется объединение в единое целое определенных различимых однотипных объектов а, которые называются элементами множества.

а Π М

Множество можно описать, указав какое-то свойство, присущее всем элементам этого множества.

Множество, все элементы которого являются числами, называется числовым. В дальнейшем мы будем, прежде всего, рассматривать именно такие множества. Множество, элементами которого являются другие множества, называется классом или семейством.

Множество, содержащее конечное число элементов, называется конечным. При подсчёте количества элементов учитываются только различные (неповторяющиеся) элементы.

Множество, не содержащее элементов, называется пустым и обозначается символом Æ. Криволинейный интеграл 2 рода

Множество может быть задано перечислением (списком) своих элементов, порождающей процедурой или описанием характеристических свойств (предикатом), которым должны обладать его элементы. Причём в последнем случае необходимо формулировать описание характеристических свойств элементов множества достаточно корректно, для того, чтобы множество было определено вполне однозначно. Добавим, что многие числовые множества могут быть заданы всеми тремя указанными способами (например, множество чётных однозначных чисел).

Мощностью конечного множества М называется количество его элементов. Обозначается . Если , то множества А и В называются равномощными.

Определение. Если все элементы множества А являются также элементами множества В, то говорят, что множество А включается (содержится) в множестве В.

 А

 В

А Ì В

Определение. Если А Í В, то множество А называется подмножеством множества В (также говорят, что В покрывает А). Если при этом А ¹ В, то множество А называется собственным подмножеством множества В и обозначается А Ì В.

Прямая в пространстве. Различные виды уравнения прямой в пространстве. Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности двух прямых. Прямая и плоскость в пространстве. Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости. Пересечение прямой и плоскости. Условие принадлежности прямой плоскости.
Математика примеры решений Вычислить определенный интеграл