Линейная алгебра и аналитическая геометрия

Свойства функций непрерывных на отрезках.

Непрерывные на отрезке функции имеют ряд важных свойств.

Теорема 1 (Вейерштрасса). Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Изображенная на рисунке 123 функция у=ƒ(х) непрерывна на отрезке [а;b], принимает свое наибольшее значение М в точке х1, а наименьшее m — в точке х2. Для любого хє[а;b] имеет место неравенство m≤ƒ(х)≤М.

Следствие 1. Если функция непрерывна на отрезке, то она ограничена на этом отрезке. Поверхности второго порядка

Теорема 2 (Больцано-Коши). Если функция у=ƒ(х) непрерывна на отрезке [a;b] и принимает на его концах неравные значения ƒ(a)=А и ƒ(b)=В, то на этом отрезке она принимает и все промежуточные значения между А и В.

Геометрически теорема очевидна (см. рис. 124).

Для любого числа С, заключенного между А и В, найдется точка с внутри этого отрезка такая, что ƒ(с)=С. Прямая у=С пересечет график функции по крайней мере в одной точке.

Следствие 2. Если функция у=ƒ(х) непрерывна на отрезке [a;b] и на его концах принимает значения разных знаков, то внутри отрезка [a; b] найдется хотя бы одна точка с, в которой данная функция ƒ(х) обращается в нуль: ƒ(с)=0.

Геометрический смысл теоремы: если график непрерывной функции переходит с одной стороны оси Ох на другую, то он пересекает ось Ох (см. рис. 125).

Следствие 2 лежит в основе так называемого «метода половинного деления», который используется для нахождения корня уравнения ƒ(х)=0.

Утверждения теорем 1 и 2, вообще говоря, делаются неверными, если нарушены какие-либо из ее условий: функция непрерывна не на отрезке [а;b], а в интервале (a;b), либо функция на отрезке [a;b] имеет разрыв.

Рисунок 126 показывает это для следствия теоремы 19.5: график разрывной функции не пересекает ось Ох.

Прямая в пространстве. Различные виды уравнения прямой в пространстве. Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности двух прямых. Прямая и плоскость в пространстве. Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости. Пересечение прямой и плоскости. Условие принадлежности прямой плоскости.
Математика примеры решений Вычислить определенный интеграл