Физика Примеры решения задач Астрономия Физика атома Цепная ядерная реакция деления Проблемы развития атомной энергетики Закон Ампера Магнитные моменты атомов Намагниченность вещества

Элементарная квантовая теория испускания атомами электромагнитного излучения.

Если атому сообщить дополнительную энергию, то он может перейти в возбужденное состояние (например, для водорода возможны переходы из состояния с n=1 в состояния с n = 2, 3, 4, … см. рис.15). Возбуждение атомов может инициироваться различными способами: за счет столкновений с элементарными частицами – ударное возбуждение, при столкновениях с атомами – тепловое возбуждение и, наконец, при поглощении атомами электромагнитного излучения. Для перехода из основного состояния в возбужденное c главным квантовым числом n атому необходимо передать энергию равную разности энергий En и E1 состояний. Если энергия передается электромагнитным излучением с непрерывным спектром частот, то из этого излучения атомом будут поглощены кванты с энергиями . Если использовать выражение (2.3) для возможных энергий, то получим формулу для серии частот поглощения атома водорода, что полностью соответствует экспериментальным данным

 . (2.9)

Если энергия, переданная электрону, будет достаточно велика, то электрон может преодолеть силу притяжения к ядру и оторваться от атома. Такой процесс называют ионизацией атома. Из рисунка 15 видно, что минимальная энергия, необходимая для ионизации атома водорода (переход n = 1 ® n = ¥), равна 13.6 эВ. Это значение хорошо согласуется с экспериментальными данными для энергии ионизации атома водорода.

В возбужденном состоянии атом долго находиться не может. Как и любая физическая система, атом стремится занять состояние с наименьшей энергией. Поэтому через время порядка 10-8с возбужденный атом самопроизвольно (спонтанно) переходит в состояние с меньшей энергией, испуская при переходе квант энергии излучения. Такой процесс продолжается до тех пор, пока атом не окажется в основном состоянии (Рис.16). Совокупность всех возможных частот или длин волн излучений атома называют спектром испускания (при анализе излучений спектроскопом им соответствует набор спектральных линий). Если структура энергетических уровней атома определена, то можно рассчитать и спектры возможных излучений данного атома. Например, используя (2.12) для атома водорода и формулу Планка , можно получить общую формулу, описывающую все экспериментальные серии излучения водорода (1.1)-(1.3) ,

 . (2.10)

Рис.16. Возможные переходы для атома водорода.

Если атом переходит из одного квантового состояния в другое с испусканием или поглощением фотона, то возможны лишь такие переходы, для которых орбитальное квантовое число  изменяется на единицу Dl = ±1. Это правило называется правилом отбора. Наличие такого правила отбора обусловлено тем, что электромагнитное излучение (фотон) уносит или вносит не только квант энергии, но и вполне определенный момент импульса, изменяющий орбитальное квантовое число для электрона на единицу. Вследствие указанных особенностей, у каждого атома имеется свой индивидуальный спектр излучения и спектр поглощения, которые полностью его идентифицируют (Рис.16).

 

Спонтанное и вынужденное излучение фотонов. Принцип работы квантового генератора и его использование.

Согласно квантовой теории излучения, атом после его возбуждения внешними источниками может самопроизвольно перейти в состояние с меньшей энергией, которое разрешено правилами отбора. При этом происходит излучение квантов, это излучение называется спонтанным. Эксперименты и теория, развитая Эйнштейном, показали, что кроме спонтанного излучения может происходить и вынужденное излучение. Вынужденное излучение происходит из-за внешнего воздействия на возбужденный атом, при этом становятся возможными переходы, которые запрещены правилами отбора. Возможность осуществления вынужденного излучения  привело к созданию источников когерентного излучения на различных частотах или квантовых генераторов: лазеров (они испускают световые волны), мазеров (короткие радиоволны), разеры (рентгеновские волны), газеры (гамма-излучение).

Для понимания сути процессов, происходящих в квантовых генераторах, рассмотрим так называемую трех уровневую схему энергетических уровней, такая схема энергетических уровней возникает, например, в кристалле рубина с примесью хрома. На основе такого кристаллического вещества, называемым рабочим телом, в 1960 г. впервые был создан Г.Мейманом в США твердотельный оптический квантовый генератор, получивший название лазера. В таком веществе энергетический спектр атомом хрома такого вещества содержит три уровня (рис.17). Верхний уровень 3 представляет собой достаточно широкую полосу, образованную совокупностью близко расположенных уровней. Главная особенность трехуровневой системы состоит в том, что уровень 2, расположенный ниже уровня 3 является метастабильным уровнем, это означает, что переход 2 ¬® 1 в такой системе запрещен законами квантовой механики. Этот запрет связан с нарушением правил отбора квантовых чисел для такого перехода. Правила отбора не являются правилами абсолютного запрета перехода, просто вероятность запрещенного квантового перехода значительно меньше, чем разрешенного. Попав в такое метастабильное состояние, атом задерживается в нем, так как время жизни атома в метастабильном состоянии  в сотни тысяч раз превышает время жизни атома в обычном возбужденном состоянии. Это обеспечивает возможность накопления возбужденных атомов с энергией Е2.

   

Рис.16. Трехуровневая схема возможных энергий рабочего тела квантового генератора.

 Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденные состояния называют накачкой. Существуют различные механизмы накачки. В рубиновом лазере используется импульсная оптическая накачка. Для этого кристалл рубина освещается ксеноновой лампой, работающей в импульсном режиме. Лампа испускает мощный световой импульс, содержащий оптическое излучение различных длин волн. Поглощая это излучение, атомы хрома переходят в возбужденные состояния 3 (рис.16, а). Время жизни таких возбужденных атомов мало, из этих состояний возможны спонтанные переходы 3 ® 1 и 3 ® 2 (рис.16, в, б). Для работы генератора важен переход на метастабильный энергетический уровень 2, такой переход является безызлучательным, то есть происходит без испускания фотона, а избыток энергии при этом передается от атомов хрома к кристаллической решетке рубина, в результате чего кристалл нагревается. Метастабильность уровня 2 обеспечивает накопление в кристалле возбужденных атомов с энергией Е2.

Если такую систему облучить слабым излучением с частотой, соответствующей переходам 2 ® 1, то запрет на переход 2®1 будет снят (рис.16, г) и произойдет вынужденное излучение той же частоты. Испущенный фотон воздействует на другие атомы и индуцирует новые фотоны, точно копирующие первоначальный. Процесс рождения фотонов носит лавинообразный характер и вынужденное излучение быстро усиливается. К настоящему времени обнаружены сотни кристаллов с примесями, которые можно использовать в качестве рабочих тел в твердотельных лазерах. Созданы также генераторы с жидкими и газовыми рабочими телами, в них за счет непрерывной накачки атомов среды, движущейся по замкнутому контуру, удается получать непрерывное электромагнитное излучение большой интенсивности.

  Необходимо отметить следующие свойства вынужденного излучения:

 1. вынужденное излучение распространяется строго в одном направлении, то есть оно имеет ничтожно малое расхождение пучка волн;

 2. излучение строго когерентно, т.е. все волны вынужденного излучения, испускаемые атомами, колеблются в одной фазе;

вынужденное излучение линейно поляризовано;

вследствие малой расходимости луча, на малой площади концентрируется большая энергия излучения.

Квантовые генераторы нашли различные области применения. С помощью газовых лазеров осуществляется сварка, резка и плавление металлов. Лазеры применяются в медицине как бескровные скальпели. Лазерные локаторы позволяют контролировать распределение загрязнений в атмосфере. Лазерная локация космических объектов способствовала созданию систем космической навигации, позволила уточнить характеристики движения планет. Сверхстабильные мазеры являются основой стандартов частот и времени. Сверхкороткие мазерные импульсы нашли применение в линиях связи. Мазерные лучи используются и для управления движением ракет. При облучении мишеней излучением мощных газеров получена высокотемпературная плазма. Когерентное излучение разеров лечит глазные, кожные и другие болезни.

  С появлением квантовых генераторов связано зарождение новых разделов физики: голографии, которая позволяет проводить фиксацию и восстановление объемных световых полей; нелинейной оптики, изучающей явления при взаимодействии мощных электромагнитных потоков; квантовой электроники, которая предполагает создание микроустройств для обработки и запоминания информации с помощью молекул, имеющих долгоживущие метастабильные состояния.

Бурное развитие квантовой электроники базируется на идеях, высказанных еще в первых работах Н.Г.Басова, А.М.Прохорова и Ч.Таунса. Этим ученым за фундаментальные исследования в области квантовой электроники в 1964 г. была присуждена Нобелевская премия по физике.

КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ Тепловое излучение. Абсолютно черное тело. Закон Кирхгофа. Распределение энергии в спектре излучения абсолютно черного тела. Квантовая гипотеза и формула Планка. Закон Стефана-Больцмана. Законы Вина. Оптическая пирометрия. Внешний фотоэффект и его законы. Фотоны. Уравнение Эйнштейна для внешнего фотоэффекта. Многофотонный фотоэффект.
Основные положения квантовой механики