Физика Примеры решения задач Астрономия Физика атома Цепная ядерная реакция деления Проблемы развития атомной энергетики Закон Ампера Магнитные моменты атомов Намагниченность вещества

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.

Аналогично определению электрического потока, или числа силовых линий Е, пересекающих поверхность S, определим магнитный поток, поток вектора магнитной индукции, или число силовых линий , пересекающих поверхность S. Потоком вектора магнитной индукции через элементарную площадку dS называется физическая величина dФm, равная произведению величины этой площадки и проекции вектора В на направление нормали к площадке dS (рис. 1.13):


Интегрируя это выражение по S, получим магнитный поток Фm сквозь произвольную замкнутую поверхность S: .

Для однородного поля и плоской поверхности, расположенной перпендикулярно В, поток рассчитывают по формуле Ф = ВS, из которой можно определить единицу магнитного потока, которая называется вебер (Вб). 1 Вб – это такой магнитный поток, который проходит через плоскую поверхность площадью 1 м2, расположенную перпендикулярно магнитному полю, индукция которого равна 1Тл: 1Вб=1Тл∙1 м2.

 Мы уже знаем, что силовые линии магнитного поля замкнуты. Поэтому, интеграл ∫ Вds по любой замкнутой поверхности должен быть равен нулю, так как внутрь поверхности входит тот же поток, что и выходит из нее. Если имеется k токов, то создаваемый ими магнитный поток:  

Здесь Вn - проекция В на нормаль к ds. Поскольку каждый интеграл по отдельности равен нулю, то и


вышеизложенное составляет суть теоремы Гаусса для потока магнитного поля Фm. Поток магнитного поля через любую замкнутую поверхность равен нулю. Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Рамка с током в однородном магнитном поле.

При исследовании магнитного поля часто используется замкнутый плоский контур с током (рамка с током), линейные размеры которого малы по сравнению с расстоянием до токов, образующих данное поле. Ориентация контура в пространстве определяется направлением нормали к контуру (рис.1.14). Нормаль строится по правилу правого винта: если головку винта вращать в направлении тока, то движение его острия совпадает с направлением n. На каждый элемент тока в рамке действует сила Ампера, и под действием этой силы магнитное поле поворачивает рамку таким образом, чтобы нормаль к ней располагалась вдоль линий магнитной индукции В. Кстати, так же располагается и стрелка компаса (рис.1.15). Рассчитаем силы, действующие на каждую из четырех сторон рамки. Для простоты будем считать, что стороны в и d перпендикулярны В (рис.1.16 а). Силы и , приложенные к проводникам а и с, численно равны и направлены вдоль вертикальной оси рамки в противоположные стороны, поэтому они полностью уравновешивают друг друга: F2 =F4=IaB.

Силы  и , действующие на прямолинейные проводники в и d, направлены перпендикулярно плоскости рисунка в противоположные стороны (на рис.4.16 б показан вид рамки сверху) и по закону Ампера численно равны:  Силы  и  создают вращающий момент , который поворачивает рамку. Модуль этого вектора М = 2F1l, где l =аsinβ (β – угол между направлением магнитной индукции поля В и нормалью к рамке). Воспользовавшись вышеприведенным выражением для силы F1, получим М = 2IaВsinβ = ISBsinβ, где S = ab- площадь рамки.

Данную формулу можно преобразовать, введя понятие магнитного момента рамки с током (или контура с током).

Магнитным моментом плоского замкнутого кон тура с током I называется вектор  , где S – площадь поверхности, ограниченной контуром (ее называют также поверхностью, натянутой на контур);– единичный вектор нормали к плоскости контура.


 Векторы  направлены перпендикулярно плоскости контура так, что из их концов ток в контуре виден идущим против часовой стрелки (рис.1.17). Для момента сил получаем , модуль момента сил будет равен М = рmBsinβ .

Действие магнитного поля на рамку с током широко применяется в электроизмерительных приборах. Работа любого прибора магнитоэлектрической системы (например, зеркального гальванометра) основана на взаимодействии магнитного поля постоянного магнита и рамки с током. Как известно, в данном случае возникает вращающий момент, который будет поворачивать рамку. Угол поворота рамки и связанные с ним показания шкалы прибора будут зависеть от силы тока в рамке. Такие гальванометры могут измерять постоянные токи порядка 10-11 А.

ЭЛЕМЕНТЫ АТОМНОЙ ФИЗИКИ И КВАНТОВОЙ МЕХАНИКИ Опытное обоснование корпускулярно-волнового дуализма свойств вещества. Формула де Бройля. Соотношение неопределенностей как проявление корпускулярно-волнового дуализма свойств материи. Волновая функция и ее статистический смысл. Ограниченность механического детерминизма. Уравнение Шредингера для стационарных состояний. Туннельный эффект. Частица в одномерной прямоугольной "потенциальной яме".
Основные положения квантовой механики